COST MODEL EXAMPLES

Scenario: Plastic Housing Example

ESARIA

- Company XYZ is a manufacturer of consumer products in the US. It is currently evaluating a proposal for a plastic housing required for one of its products.
- The incumbent supplier, located in Peoria, IL, specializes in injection molding. The supplier has a strong financial standing and current revenue of \$1.85 billion.
- The supplier has proposed a price of \$2.50 per plastic housing part requiring 1.1lbs of medium impact abs resin.
- The process calls for the use of a **600 ton injection molding press** that typically produces **120 parts per hour**.
- The supply manager would like you to prepare a process "should" cost model in order to be prepared for the upcoming negotiation.

Understand the process

ESARIA

Process consists of four distinct operations (600 ton injection molder):

- 1. Melting the resin (Injection Medium impact ABS)
- 2. Injection of the resin into the closed mold
- 3. Cooling the resin inside the closed mold
- 4. Opening the mold and ejecting the molded part

Determine key drivers for each cost element

KLESARIA

GRC

Cost	Cost Drivers	Data Source/s
Direct Material	Raw material price, weight (quantity), yield	www.ptonline.com, spec, IMM Benchmarking report
Direct Labor Labor rate, labor hours, yield		www.salary.com, subject matter experts, site visit
Manufacturing Overhead	Loaded machine hourly rate, machine hours, yield	www.plasticstechnology.com, subject matter experts, site visit
GSA & other exp and Profit before tax	Industry ratios	RMA- Annual Statement Studies, Company Financial Reports, Reuters, etc.

Direct Material =	\$	*	# lbs	*	# parts
lb			part		# good parts
	resin price		weight		yield

Information for Material cost driver: Resin Price

Market Prices Effective Mid-January 2022

Resin Grade	¢/lb
POLYETHYLENE (railcar) LDPE, LINER LLDPE BUTENE, FILM NYMEX 'FINANCIAL' FUTURES	94-96 83-85 63 58
HDPE, G-P INJECTION HDPE, BLOW MOLDING NYMEX 'FINANCIAL' FUTURES FEBRUARY HDPE, HMW FILM	87-89 82-84 57 55 87-89
POLYPROPYLENE (railcar) G-P HOMOPOLYMER, INJECTION NYMEX 'FINANCIAL' FUTURES FEBRUARY. IMPACT COPOLYMER.	112-114 96 70 115-117
POLYSTYRENE (railcar) G-P CRYSTAL. HIPS.	105-108 113-117
PVC RESIN (railcar) G-P HOMOPOLYMER. PIPE GRADE.	102-104 104-106
PET (truckload) U.S. BOTTLE GRADE	78.5-80.5

*Prices in US cents per pound

Plastic Technology

Copyright © 2022 Duplication prohibited without written consent

Calculation for Material cost drivers

Production Yield (from secondary research)

Production data (Yield)

ESARIA

....... Scrap, customer returns, and scheduled ship date on time largely remain a testimony to the participants' efficiency. **Scrap generally runs 1 to 2.5 percent, averaging 2.0 percent**. Returns have stayed below .5 percent for the overwhelming majority of the report, averaging .30 percent, and the on-time ship date averaged 95.7 percent over the program's five years......

** Yield of 99% is used for material costs and 98% for labor costs.

ESARIA

Information for Labor cost drivers

www.salary.com

Calculation for Labor cost drivers

	Direct Labor =	\$21.98 *	1 hr 🔹	30 seconds *	100 parts
		hr	3600 seconds	part	98 good parts
L	Driver Name =	wage rate	time conversion rate	cycle time	labor yield
	Source =	Salary.com	calculation	Subject matter	IMM Study
				expert	

DIRECT LABOR = \$0.19

Calculation for Manufacturing Overhead

Apply MOH / DL ratio

from a: Industry Cost Profile OR

b: Zero Base Pricing[™] book

or

1

2 Find a MOH \$ / hr Benchmark

1a

Apply MOH / DL ratio to calculate MOH value

All Other Plastics Product Manufacturing

NAICS: 326199

ESARIA

(ił

Element	%	
Direct Material	47.4%	
Direct Labor	12.0%	19.2%
Manufacturing Overhead	19.2%	12.0%
Cost of Goods Sold	78.5%	IF CALCULATED DIRECT LABOR ≈ \$0.19
GSA & Other Expenses	12.0%	unit
Profit Before Taxes	9.5%	THEN MOH ≈ \$0.19/ unit * 1.60 ≈
PRICE	100%	\$0.30/ unit

Copyright © 2022 Duplication prohibited without written consent

1b

Apply MOH / DL ratio from Industry Data

	OVERHEAD AS A	PERCENT OF DIRECT LA	BOR
	OTLINIE		
	Manual	Semi-Automated	Automated
	Hand Type	Process	Facilities
	Operations	Operations	Processes
	One Stage	& Techniques	N.C.M.
	Machine	Multi-Stage	Computer
	Operations	Machine	Systems
		Operations	
Diana Dante	100%	175 to 200%	250 to 300%
riece rans			
The set Manual	125%	150 to 200%	250 to 350%
Sheet Metal			
Stamping			
Forming			
Blanking			15.00-2010
Drilling			
Other			
	125%	150 to 250%	275 to 400%
Casting	140.0		
	100%	100 to 200%	225 to 400%
Assembly	100-0		
(Apparatus)			
-		175 to 200%	250 to 300%
Components			
	1259	170 00 25 %	250
quipment	14370	1	
		150 to 200%	225 to 300%
Plastic Molding	-	1.50 10 200 10	

Overhead as a % of Direct Labor =

150 to 200%

Plastic Molding

Source: Zero Base Pricing[™], Appendix E page 398

Copyright © 2022 Duplication prohibited without written consent

FIND A MOH \$ / hr BENCHMARK

Duplication prohibited without written consent

Calculation of Manufacturing Overhead costs

Mfg Overhead =	\$104.26 *	1 hr	*	30 seconds	*	100 parts
	hr	3600 seconds		part		98 good parts
Driver Name =	machine ra	te time conve rate	rsion	cycle time		labor yield
Source =	Plastics	calculation	calculation		r	IMM Study
	Technology			expert		

MANUFACTURING OVERHEAD = \$0.89

Element	Calculation / Result	
Direct Material	\$0.98	
Direct Labor	\$0.19	
Manufacturing Overhead *	\$0.30	
Cost of Goods Sold	\$1.47	
GSA & Other Expenses	% GSA * Should Cost	
Profit Before Taxes	% PBT * Should Cost	
SHOULD COST	COGS \$ / COGS %	

ANKLESARIA

* Manufacturing Overhead based on option #1

Copyright © 2022 Duplication prohibited without written consent

NEXT STEP

Use RMA data to develop the industry cost profile

326199 - Plastic Products Manufacturers

View related industries: 326199 - All Other Plastics Prod	luct Manufacturing		Year:	-21	Region: National -	All Regions	*	Print	Export
FRB Assets FRB History F	RB Sales IDP Assets	IDP History	IDP Sales						
		0-1MM	1-3MM	3-5MM	5-10MM	10-25MM	25MM and Over	All	
All Other Non-Current Liabilities			7.7	5.2	7.3	4.4	7.3	6.9	
III Net Worth			28.7	51.3	31.5	44.6	44.5	41.4	
Total Liabilities & Net Worth			100.0	100.0	100.0	100.0	100.0	100.0	
INCOME DATA									
Met Sales			100.0	100.0	100.0	100.0	100.0	100.0	
Gross Profit			44.4	35.3	32.0	27.9	21.5	27.4	
Operating Expenses			40.2	31.7	26.8	21.4	16.5	22.1	
Operating Profit			4.2	3.6	5.2	6.6	5.0	5.3	
All Other Expenses (net)			1.1	.3	.9	.9	1.5	1.1	
Frofit Before Taxes			3.0	3.3	4.3	5.6	3.5	4.1	
EBITDA			7.8	7.1	8.3	9.8	9.5	9.0	
RATIOS									

Process-Based Cost Models

Use the industry cost profile to determine the should cost and calculate the remaining cost elements

Element	%	Calculation
Cost of Goods Sold	78.5%	100% - 21.5%; RMA Sales – Gross Profit
GSA & Other Expenses	18.0%	100% - COGS - PBT
Profit Before Taxes	3.5%	RMA Profit before taxes
SHOULD COST	100%	

Element	\$	Calculation / Result
Direct Material	\$0.98	Calculated \$
Direct Labor	\$0.19	Calculated \$
Manufacturing Overhead	\$0.30	Calculated \$
Cost of Goods Sold	\$1.47	\$ DM + \$ DL + \$ MOH
GSA & Other Expenses	\$0.34	\$1.87 * 0.18
Profit Before Taxes	\$0.06	\$1.87 * 0.035
SHOULD COST	\$1.87	\$1.47 / 0.785

Validate model with market/supplier information

Should Cost Model for Plastic Housing *(figures in \$)*:

Element	Should Cost \$	Supplier \$
Direct Material	\$0.98	Validate
Direct Labor	\$0.19	Validate
Manufacturing Overhead	\$0.30	Validate
Cost of Goods Sold	\$1.47	Validate
GSA & Other Expenses	\$0.34	Validate
Profit Before Taxes	\$0.06	Validate
SHOULD COST	\$1.87	\$2.50

Potential savings 33.7%

